Laboratory data Standard for eHealth Record in Hong Kong

LOINC Workshop 2013

John Mok
Health Informatician

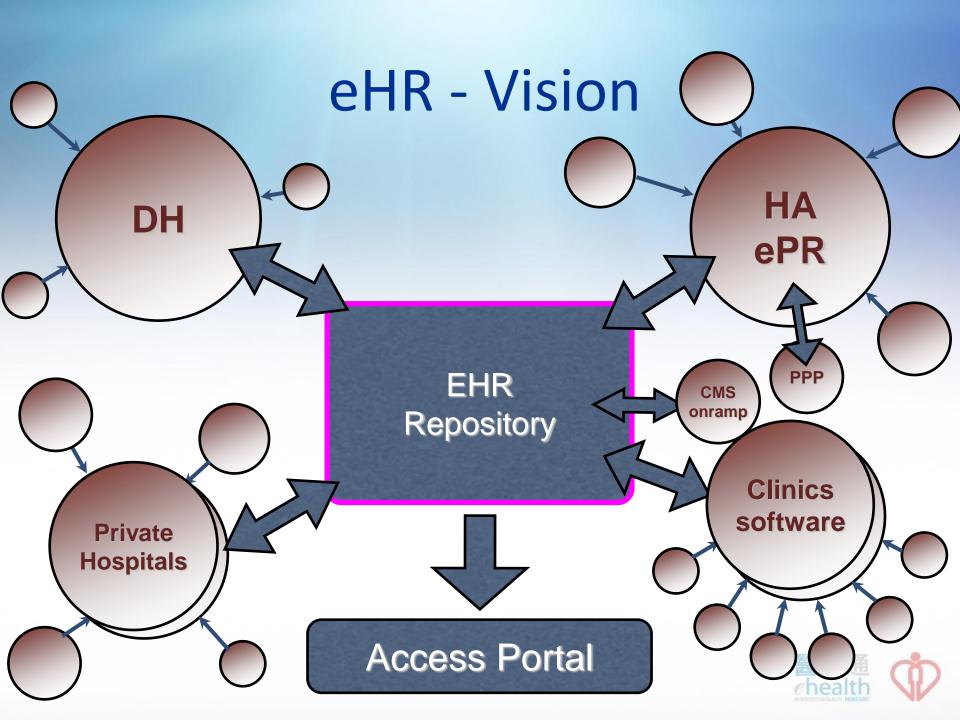
Outline

- Background of eHR
- Planning of eHR for laboratory record
- Adopted laboratory record standards
- Proposed laboratory report models
- eHR Test Description for laboratory
- LOINC adoption strategy
- Q&A

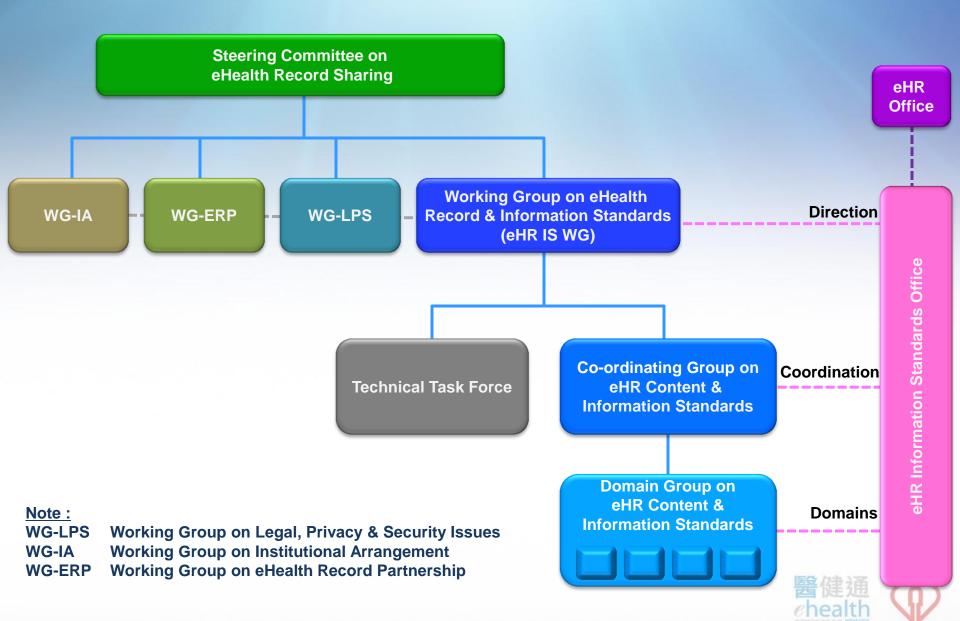
Electronic Health Record

 An electronic womb-to-tomb health record comprising of all important health data about a person which can be accessed at anytime, anywhere by the authorized person.

HKSAR GOVI


Guiding Principles for eHR development

- Government led model
- Compelling but not compulsory record sharing
- Privacy and security of paramount importance
- Open technical standards
- Building block approach


Patient-oriented system

Standard-based records

Protocol-based operations

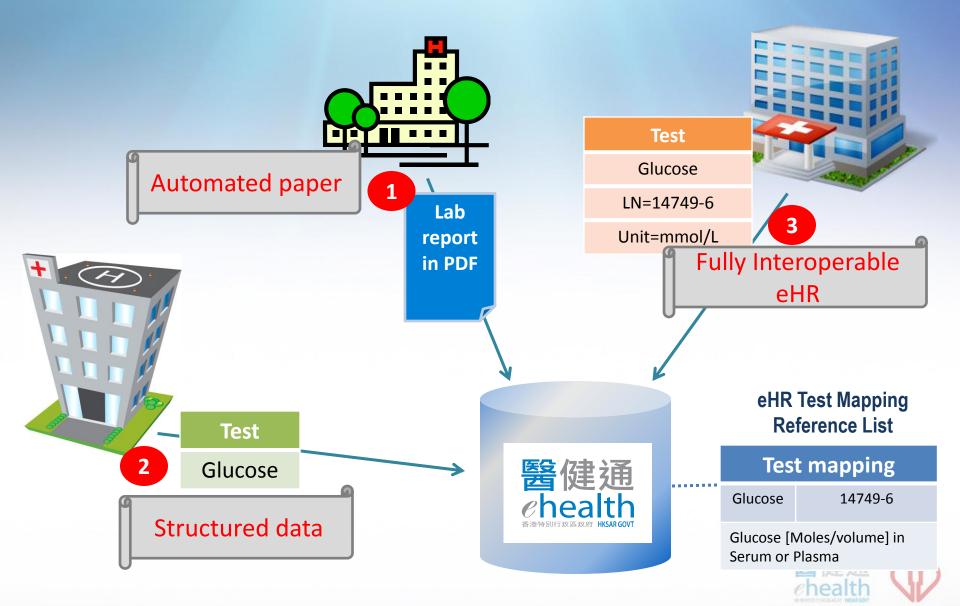
Organisation Structure for eHR Information Standards

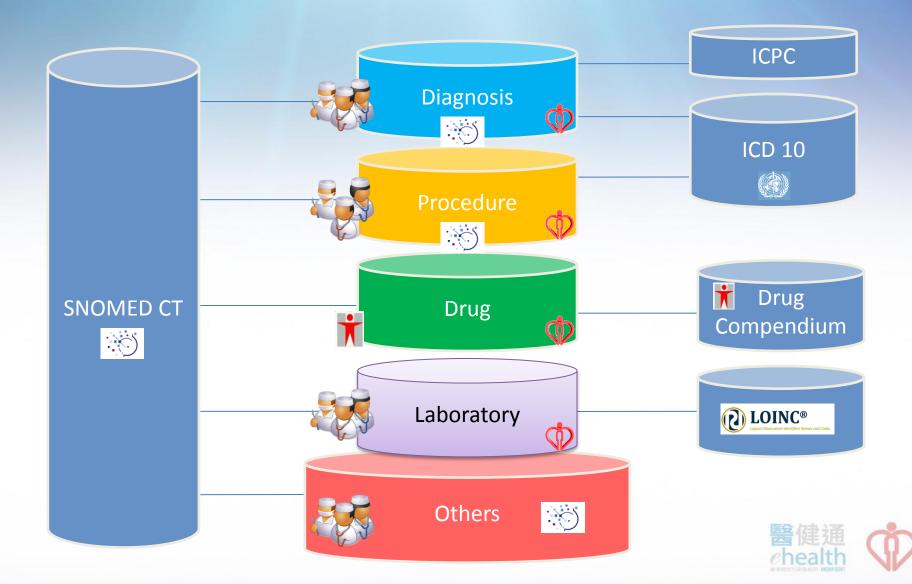
eHR Information Standards Domain Group on Laboratory Record

Member Name	Association		
Existing Member			
Dr K C LEE	HA-Pathology IT Steering Group, Hospital Authority		
Ms Juliet CHENG	Food and Health Bureau		
Ms Judy CHAN	Food and Health Bureau		
Dr Kwok Tim CHAN	Department of Health		
Dr Pak Wing CHIM	Department of Health		
Dr Janice LO	Department of Health		
Dr Chung Ping HO	HK Medical Association		
Dr Kui Fat CHAN	Hong Kong College of Pathologists		
Ms Marianne LEUNG	Hong Kong Association of Medical Laboratories		
Ms Denna KO	Hong Kong Private Hospitals Association		
Mr Gary CHU	Hong Kong Private Hospitals Association		
Mr Chi Lim KWOK	Hong Kong Institute of Medical Laboratory Sciences		
Ms Amber LAM	HAITS- LIS Project Team		
Mr Sam YEUNG	HAITS- LIS Project Team		
Mr Hudson CHAN	eHR PMO		
Ms Clara CHEUNG	eHR PMO		
Ms Vicky FUNG	eHR ISO		
Mr John MOK	eHR ISO		

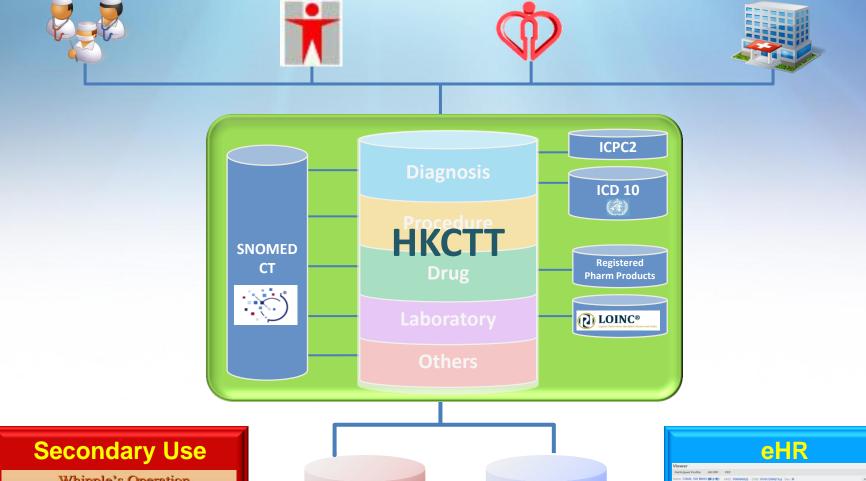
We meet
Three times
per year

Standardisation for eHR


- Ensure accurate interpretation of health data by all parties
- Support reuse of data
- Reduce duplicated efforts in data entry
- Facilitate interoperability of systems for data captured at different platforms
- Improve efficiency of healthcare services
- Assist in protection of public health


Phased Approach – A Proposal

eHR Section	Level 1	Level 2	Level 3
eHR Participant			
Encounter			
Referral			
Clinical note / summary			
Adverse reaction / allergy			
Clinical alert			
Problem			
Procedure			
Birth record			
Assessment / physical exam			
Social history			
Past medical history			
Family history			
Drug – prescription record			
Drug – dispensary record			
Immunization			
Clinical request			
Diagnostic test result – Laboratory			
Diagnostic test result – Radiology			
Diagnostic test result – Other investigation			
Care & treatment plan			醫健通 💏
Key: Phase 1 Phase 2 Phase 3	Phase 4	Phase 5	Chealth WANGOTT


Glucose test result

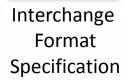
Recognised Terminologies

Hong Kong Clinical Terminology Table

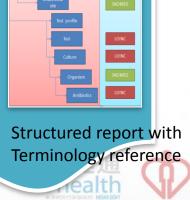
Clinical Data Repository

eHR

Laboratory data standards for eHR


Laboratory Standards Roadmap

HL7 message


eHR

*e*health

Format

Specification

References

Logical Observation Identifiers Names and Codes (LOINC®) Users' Guide

Edited by: Clem McDonald, MD, Stan Huff, MD, Kathy Mercer, Jo Anna Hernandez, Daniel J. Vreeman, PT. DPT

Please send questions and comments to:

LOINC c/o Regenstrief Institute, Inc 410 West 10th St. Suite 2000 Indianapolis, IN 46202

or via email:

loinc@regenstrief.org

This and other relevant documents and files are available at

List of Files:

Description LOINC table (database) LOINC table (database)	Format MDB ASCII	File Name LOINCDB MDB LOINCDB TXT
LOINC Users' Guide	PDF	LOINCManual.pdf
RELMA Program RELMA Users' Manual	PDF	Setup.exe RELMAManual.pdf

nehta

Pathology Terminology Approach Document

31/10/2008

nehta

Clinical Terminology - Pathology

Detailed Release Information

Version 1.0 - 30/05/2007

IHE International

Integrating the Healthcare Enterprise

Laboratory **Technical Framework**

Volume 4 (LAB TF-4) LOINC Test Codes Subset

> Revision 2.1 - Final Text August 8, 2008

INTERNATIONAL HEALTH TERMINOLOGY STANDARDS DEVELOPMENT ORGANISATION

SNOMED Clinical Terms® User Guide July 2010 International Release (US English)

@2002-2010 International Health Terminology Standards Development Organisation CVR #: 30363434

Issues in Mapping LOINC Laboratory Tests to SNOMED CT

Olivier Bodenreider, MD, PhD U.S. National Library of Medicine, NIH, Bethesda, MD olivier@nlm.nih.gov

Abstract Comprehensive clinical terminologies such as SNOABE CT and to evolving with specialized arrival content of the specialized arrival source of the state o

INTOMENTORS

Bloomedical terminologies and outologies have proliferated in the past decade, not only for biology, but also for climical medicine [1]. Terminologies such as SNOMED CT provide a large coverage of the domain of climical medicine and often overlap with other large general neurologies (e.g., MeSE) and with specialized terminologies (e.g., LODNC).

In clinical information systems, terminologies such as SNOMED CT, used in patient records, need to be as SNOMED CT, used in patter records, need to be interoperable with hemitoologies used in subsystems, such as informany systems (e.g., LODNC). Termino-gy integrations systems, such as the Lindel Medical organization of the control of the control of the con-trol of the companies of the control of the con-trol of the companies of the terminologies in the UMLS is the lexical resemblance among con-trol of the control of the control of the con-panies of the con-trol of the con-panies of the con-trol of the processing, such as the names of laboratory tens as LOINC, generally cannot be mapped to equivalent concepts in other terminologies. However, both SNOMED CT and LOINC provide formal definitions

for their concepts in the form of a rich set of relations to other concepts. Comparing such sets of relations also provides the basis for comparing these concepts, provided there are enough shared relations between the two terminologies.

The objective of this paper is to analyze the issues in The objective of this paper is to analyze the issues in mapping concepts for inhometry test from LODNC to existing, pre-coordinated SNOMED CT concepts, and to exhaust each such as concepts and to evaluate the proportion of such mappings that can be derived automatically. Although SNOMED CT supports post-coordination, this study is purposely limited to the mapping hereen pre-coordinated concepts in LODNC and SNOMED CT.

NOMELL 1.

The development of these terminologies is often supported by public flanding, and harmonization between these terminologies has recently because a requirement of the second process of the study can also be considered a contribution to harmonizing SOMMED C7, the most conceptehenitive clinical terminology with LODNC, the leading terminology for inhostory term. What is deep studies have explored the imagnition of LODNC and SOMMED [7]. So there thereminologies have not been harmonized

Background

The general problem area of this study is ontology matching, i.e., the identification of equivalent (or related) concepts across ontologies. Among the approaches developed for aligning entologies, the two major families of techniques explore the leucal resemblance among concept names (leucia alignment) and the siturcular leuenthumac manog sets or relations in which the concepts are involved (surrural resemblance). A review of these methods is beyond resemblance). A review of these methods is beyond the scope of this paper and the interested reader is referred to [4] for further information.

returned to [4] for nuture uncommonou.

In the case of LoDNC, as mentioned earlier, the names of laboratory tests are not amountable to natural language processing schmiques, including self distance, stemuming and normalization, because LoDNC strings are created by concatenating with colours the names of the concepts to which a laboratory test is

Lab data Terminology Adoption

Like a Question – Urine Culture?

INTERNATIONAL HEALTH TERMINOLOGY STANDARDS DEVELOPMENT ORGANISATION

SNOMED CT

Like an Answer – Escherichia coli

Both LOINC and SNOMED CT being used

Implementation of National Standards (LOINC, SNOMED) for Electronic Reporting of Laboratory Results: BioSense Experience

Nikolay Lipskiy¹, DrPH, MS, MBA; Jerome I. Tokars¹, MD, MPH; Stephen Benoit¹, MD, MPH, Roseanne English¹ and Sundak Ganesan², MD

CDC, 1-National Center for Public Health Informatics, Division of Emergency Preparedness and Response; 2- National Center for Public Health Informatics, Division of Informatics Shared Services

The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official positions of the Centers for Disease Control and Prevention

SAFER · HEALTHIER · PEOPLE™

Terminology A brief introduction of LOINC

LOINC - Background

- Logical Observation Identifiers Names and Codes
- LOINC system was initiated in 1994 by the Regenstrief Institute, a non-profit medical research organization associated with Indiana University.
- Developed for data exchange of lab results among different institutions

Why LOINC

 Most widely adopted reference terminology for Laboratory

 Nearly 60,000 terms and where 44,000 related to laboratory (in 2011 figures)

Free to use

Frequent update

An example of a LOINC code

Six-axis

LOINC code

- Component
- Property
- Timing
- System
- Scale
- Method

2951-2

- Sodium
- SCnc
- Pt
- Ser/Plas
- Qn

Sodium [Moles/volume] in Serum or Plasma

LOINC mapping examples

Test Description	Test unit	LOINC_CODE	LONG_COMMON_NAME
CALCULUS ANALYSIS		14638-1	Calculus analysis [interpretation] in Stone
Cholinesterase (Pseudo)	kU/L	2098-2	Cholinesterase [Enzymatic activity/volume] in Serum or Plasma
Copper	umol/L	14665-4	Copper [Molecules/volume] in Serum or Plasma
Ferritin	ug/L	2276-4	Ferritin [Mass/volume] in Serum or Plasma
Occult Blood		2335-8	Hemoglobin.gastrointestinal [Presence] in Stool
IGE	kIU/L	19113-0	IgE [Units/volume] in Serum
LEAD	umol/L	14807-2	Lead [Molecules/volume] in Blood
Lithium	mmol/L	14334-7	Lithium [Molecules/volume] in Serum or Plasma
Appearance		9335-1	Appearance of Body fluid
Amylase	U/L	1795-4	Amylase [Enzymatic activity/volume] in Body fluid
Chloride	mmol/L	2072-7	Chloride [Molecules/volume] in Body fluid
Creatinine	umol/L	25386-4	Creatinine [Molecules/volume] in Body fluid
Glucose	mmol/L	14745-4	Glucose [Molecules/volume] in Body fluid
LDH	U/L	2529-6	Lactate dehydrogenase [Enzymatic activity/volume] in Body fluid
Potassium	mmol/L	2821-7	Potassium [Molecules/volume] in Body fluid
Protein, Total	g/L	2881-1	Protein [Mass/volume] in Body fluid
Sodium	mmol/L	2950-4	Sodium [Molecules/volume] in Body fluid
Urate	mmol/L	25548-9	Urate [Molecules/volume] in Body fluid
Urea	mmol/L	25549-7	Urea [Molecules/volume] in Body fluid
Cortisol, SPOT	nmol/L	14675-3	Cortisol [Molecules/volume] in Serum or Plasma
Urine Volume (24hr)	L	3167-4	Volume of 24 hour Urine
Urine VMA	umol/L	15097-9	VanillyImandelate [Molecules/volume] in Urine
Urine VMA, 24 hr	umol/24h	14947-6	VanillyImandelate [Molecules/time] in 24 hour Urine
Urine Adrenaline	nmol/L	24521-7	Epinephrine [Molecules/volume] in Urine
Urine Adrenaline, 24hr	nmol/24H	14712-4	Epinephrine [Molecules/time] in 24 hour Urine
Urine Noradrenaline	nmol/L	14853-6	Norepinephrine [Molecules/volume] in Urine
Urine Noradrenaline, 24hr	nmol/24H	14854-4	Norepinephrine [Molecules/time] in 24 hour Urine
Urine Dopamine	nmol/L	15058-1	Dopamine [Molecules/volume] in Urine
Urine Dopamine, 24hr	nmol/24H	15059-9	Dopamine [Molecules/time] in 24 hour Urine
Glucose, fasting	mmol/L	14771-0	Glucose [Molecules/volume] in Serum or Plasmapost CFst
Glucose, 2 hour post load	mmol/L	14759-5	Glucose [Molecules/volume] in Serum or Plasma2 hours post dose glucose
Carbamazepine	umol/L	14639-9	Carbamazepine [Molecules/volume] in Serum or Plasma
Digoxin	umol/L	14698-5	Digoxin [Molecules/volume] in Serum or Plasma
Valproic acid	umol/L	14946-8	Valproate [Molecules/volume] in Serum or Plasma
Phenobarbital	umol/L	14874-2	Phenobarbital [Molecules/volume] in Serum or Plasma
Phenytoin	umol/L	14877-5	Phenytoin [Molecules/volume] in Serum or Plasma
Theophylline	umol/L	14915-3	Theophylline [Molecules/volume] in Serum or Plasma
Time -1		29264-9	Collection time of Blood
Glucose - specimen 1	mmol/L	54392-6	Glucose [Molecules/volume] in Serum or Plasma1st specimen post XXX challenge
Time - 2		49972-3	Collection time of Blood2nd specimen
Ohionea annaissa 0	1/1	E4000 7	Character Male suitable based in Communication Confidence and NOV shallower

International adoptions

Region	Laboratory Test
Canada: BC, Ontario-ELINCS	LOINC
USA: CDC, CAP	LOINC
UK-NHS	SNOMED CT
France- SFIL	LOINC
Brazil	LOINC
Taiwan-NHII	LOINC
Australia-NEHTA (RCPA)	LOINC (Reporting test)
China-EHR based Regional health information platform	LOINC
Singapore-HIE	LOINC (potential adoption)
Korea	LOINC
Hong Kong	LOINC
•••	LOINC

Source: http://breeze.iu.edu/labloinc201006/

HL7 v2.x OBX Segment

A code identifies the datatype as a coded element

The code is from LOINC

The code is from SNOMED CT

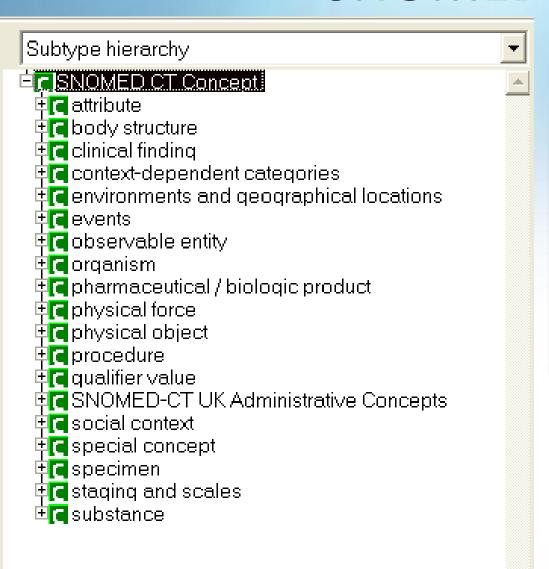
OBX||CE|630-4^Urine Culture^LN||52499004^Pseudomonas aeruginosa^SCT|

A code identifies the data in OBX-3

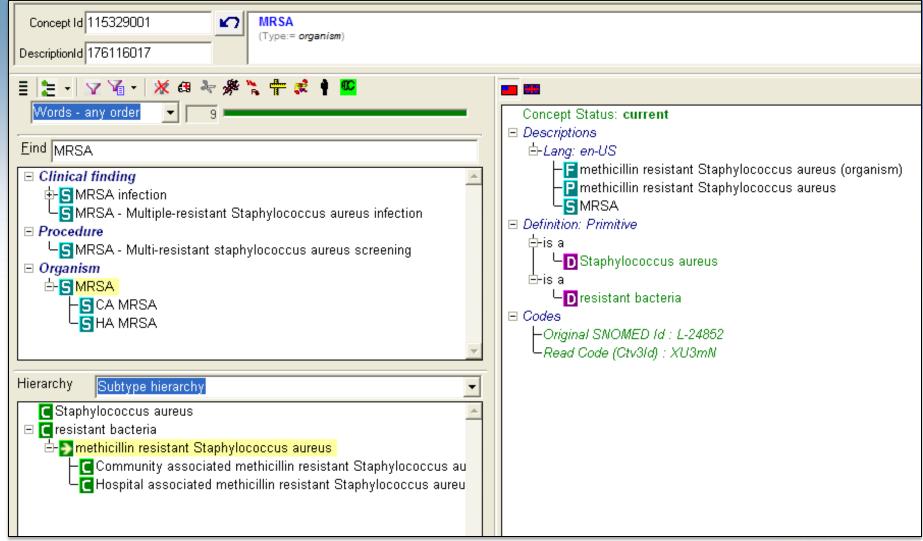
Coded result for OBX-5

SNOMED CT Introduction

■ INTERNATIONAL HEALTH TERMINOLOGY STANDARDS DEVELOPMENT ORGANISATION



What is SNOMED CT


- SNOMED CT is a comprehensive clinical terminology, originally created by the College of American Pathologists (CAP), collaborated with NHS, and is now licensed by the <u>International Health Terminology</u> <u>Standards Development Organisation</u> (IHTSDO).
- The terminology is comprised of **concepts, terms and relationships** across different scopes of health care.
- "Concept" is a clinical meaning identified by an unique permanent numeric identifier (Concept ID).
- Each concept has one unique "Fully Specified Name" intended to provide an unambiguous way to name a concept.
- Each concept in SNOMED CT is logically defined through its "relationships" to other concepts.

SNOMED CT

- Most widely adopted medical reference terminology
- Cover 19 domain area (hierarchies)
- Around 380,000 concepts
- Nearly 900,000 relationships

Find "MRSA" via a SCT browser

eHR Laboratory Results Reporting Model

- Laboratory results in PDF or free text
 - Level 1 Compliance

- Laboratory results in structured format
 - Local codes -> Level 2 Compliance
 - International codes (recognized terminologies -> Level 3 Compliance)

一番院管理局 Hospital Authority 東涌番院 Tung Chung Hospital

病理化驗部 Department of Pathology

生化病理報告 Chemical Pathology Report

Case No.: SUR 07012345 (MRN: 223345

Name: CHAN, TAI MAN

陳大文 HKID: A123456(3) Sex: M Age: 19Y DOB: 01/07/1987

Hosp/Spec/Ward/Bed: TCH/SUR/A5/02 Doctor Request: Dr. Chan Wing

Dr. Ref.:

Lab No.: 07C0377791 Final Report Clinical Details: GIB

Collect Date : 13/03/07 Collect Time : 18:40 Arrive Date : 13/03/07 Arrive Time : 18:40 Request No. : C0377791

Reference Urgency Range Potassium 3.0 L 3.4 - 4.7Chloride 100 96 - 111 mmo1/L Urea 5.1 1.8 - 6.4 OCreatinine umo1/L Total Protein 60 - 80 g/L 37 L 38 - 54 Albumin. g/LGlobulin q/LBilirubin, total < 19 umo1/L < 300 U/L < 39 Calcium 2.27 2.20 - 2.70 mmo1/L 1.1 - 2.0 mmo1/L Phosphate 1.39

eHR Content -Header

General Laboratory report

Free text or PDF

Authorized by: LIS Team Member

***** End of report *****

*This is a final report. Please retain in patient record permanently.

This Laboratory is accredited by the College of American Pathologists

CAP Accreditation Number 71755-25

Report on: 13/03/2007 18:43 Report Destination: KWH/SUR/PL Printed on 13/03/2007 18:44 Cum Page No.: 1 Page No.: 1/1

Hospital Authority Tung Chung Hospital

Department of Pathology

生化病理報告 Chemical Pathology Report

Case No.: SUR 07012345 (MRN: 223345)

Nama: CHAN, TAI MAN

Reference

96 - 111

< 19

Sex: M Age: 19Y DOB: 01/07 Hosp/Spec/Ward/Bed: TCH/SUR/A5/02 Doctor Request: Dr. Chan Wing

Lab No.: 07C0377791 Final Report URGENT

Clinical Details: GIB

Collect Date : 13/03/07 Collect Time : 18:40 Arrive Date : 13/03/07 Arrive Time : 18:40 Request No. : C0377791

Urgency :	
Sodium	139
Potassium	3.0 L
Chloride	100
Urea	5.1
OCreatinine	68
Total Protein	68
Albumin	37 L
Globulin	31
Bilirubin, total	11
ALP	60
ALT	13
Calcium	2.27

1.39

Phosphate

nmo1/L

mmo1/L mmo1/L umo1/L g/L

> q/Lg/L

umo1/L

General Laboratory report

Structured data

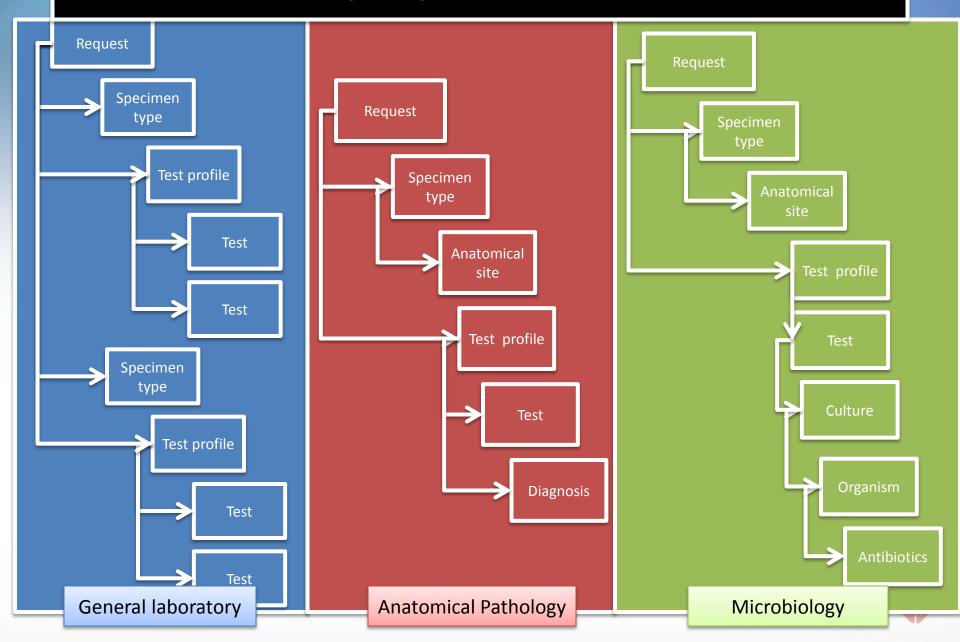
Test name + Local codes (Level 2) **International codes (Level 3)**

Authorized by: LIS Team Member

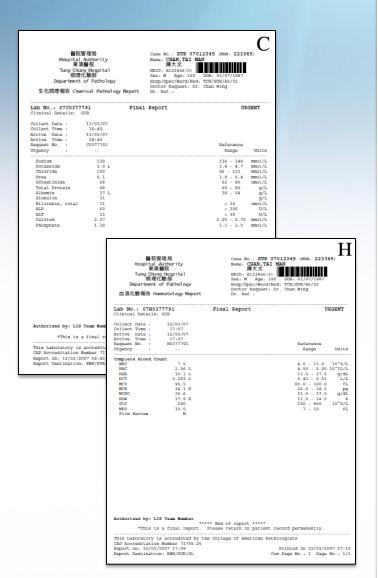
***** End of report *****

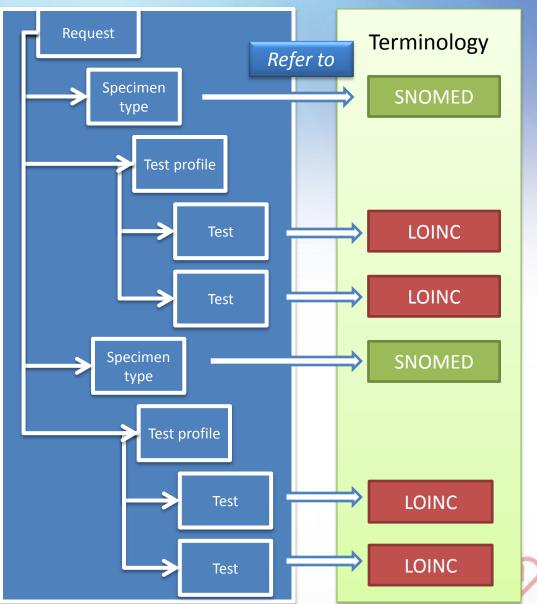

*This is a final report. Please retain in patient record permanently.

This Laboratory is accredited by the College of American Pathologists

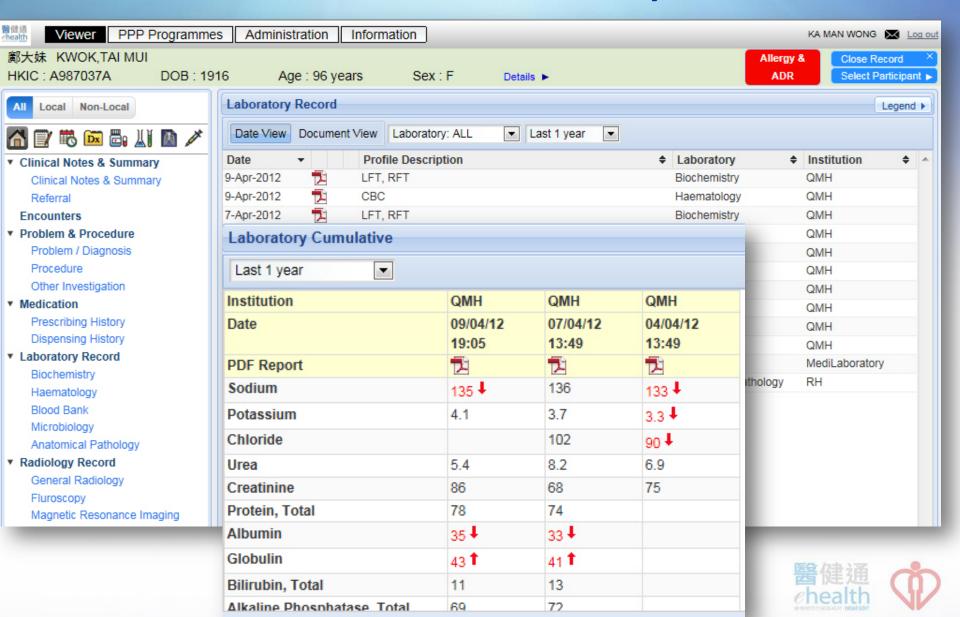

CAP Accreditation Number 71755-25

Report on: 13/03/2007 18:43 Report Destination: KWH/SUR/PL

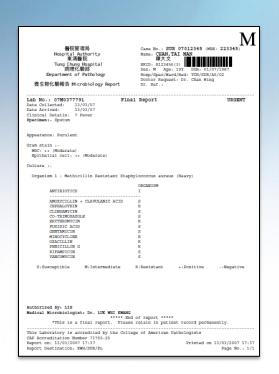

Printed on 13/03/2007 18:44 Cum Page No.: 1 Page No.: 1/1

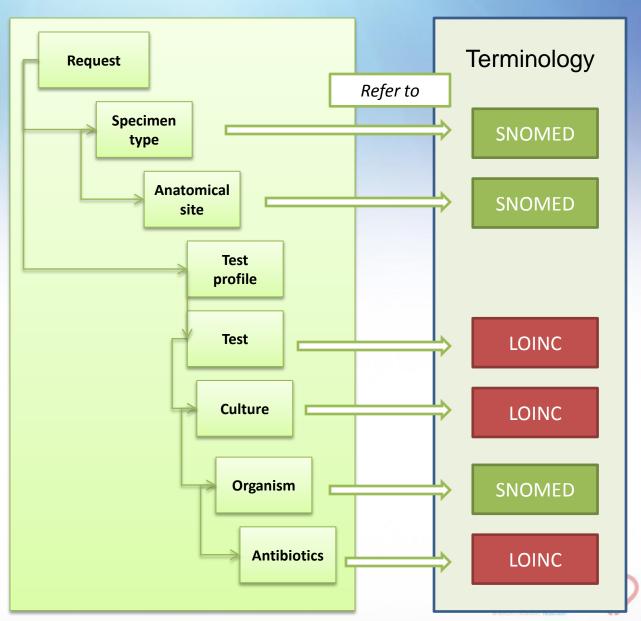


Laboratory Report Structure Model



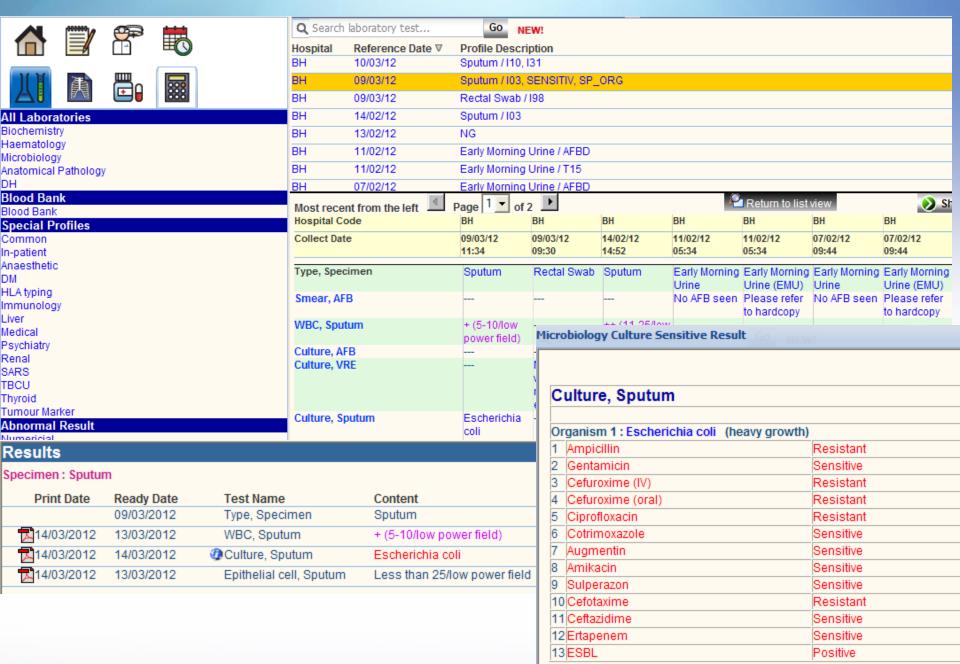
Structured report model - Clinical Pathology



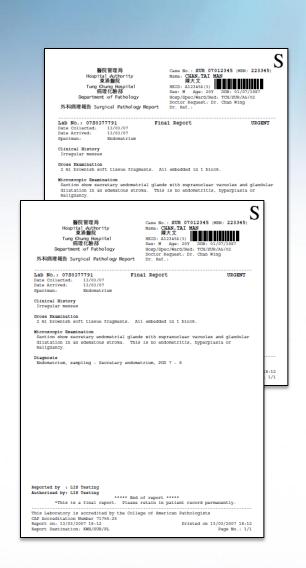


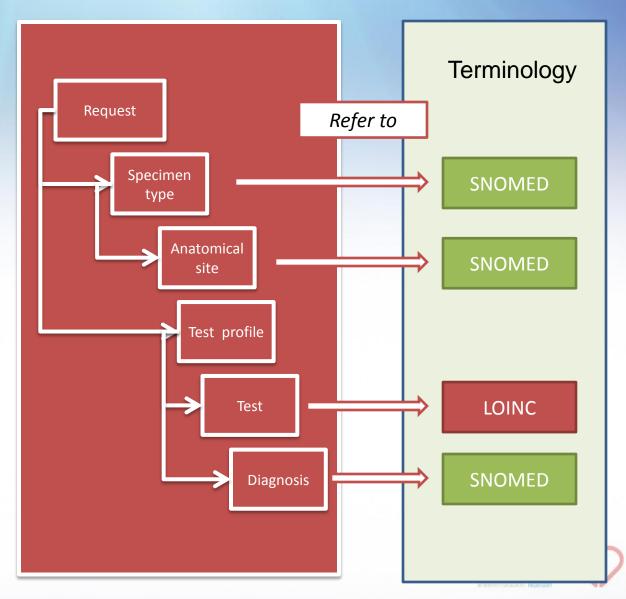
Cumulative Laboratory Result

Structured report model - Microbiology



Microbiology Report Content


- Compliance level 1, 2 and 3
 - Level 1 report PDF
 - Level 2 structured data
 - Level 3 structured data with Reference Terminology
 - Specimen type SNOMED CT
 - Test LOINC
 - Organism SNOMED CT
 - Susceptibility test LOINC



HA-ePR Laboratory Result Enquiry

Structured report model - Anatomical Pathology

MICROSCOPIC EXAMINATION: (A) - Histological type: Adenocarcinoma (with extensive ulceration) - Differentiation: Moderate - Local invasion: pT3c - 5-15 mm beyond border of muscularis propria (block A7) - Invasive pattern: Infiltrative - Associated lymphocytic reaction: Patchy - Peritumoural lymphovascular permeation: Absent - Perineural invasion: Absent - Extramural venous invasion: Pathology Report - Adjacent non-neoplastic colon: Unremarkable - Serosal (peritonealised) surface: Clear (5 mm from tumour front) - Proximal 'cut end' resection margin: Clear - Distal 'cut end' resection margin: Clear - Apical lymph node(s) - Number of lymph node(s) examined: 1 - Number of lymph node(s) involved: 0 - All lymph node(s) (apical, intermediate and peritoneal) - Total number of lymph node(s) examined: 15 - Total number of lymph node(s) involved: 0 - Dukes' stage: B (tumour beyond muscularis propria, nodes negative) (B) Sections show full thickness large intestinal tissue, in which there is no evidence of dysplasia or malignancy. DIACNOSIS: (A) Sigmoid COLON, anterior resection: - Moderately differentiated ADENOCARCINOMA, __nT3cNO (TNM, AJCC 5th edition), Resection margins clear.

(B) COLON, distal resection margin, anterior resection - NO MALIGNANCY.

	sno_labno	sno_field	sno_seq	sno_tcode	sno_tclass	sno_tseq	sno_mcode	sno_mclass	sno_mseq
	10BX002715	DIAG	1	T-59300	01	000	M-81403	01	000
	10B×002715	DIAG	2	T-59300	01	000	M-09450	01	002

HA-ePR pathology result enquiry

Ana	tomical Path R	Result			Return to list view		
	Case No.	Record No.	Last Report Date ⊽	Test Name	Site	Print Date	Report Type
(3)	GYN 9611301U	02AH010711	26/03/2007	Biopsy	Endometrium		Final Report
(3)	GYN 9611301U	01AC014824	27/03/2006	GYN Cytology	Cervix		Final Report
(3)	GYN 9611301U	00AC013810	28/03/2005	GYN Cytology	Cervix		Final Report
(3)	HN99967140Q	99AH014254	16/05/2004	Biopsy	Endometrium		Final Report
3	GYN 9611301U	98AC033727	14/10/2003	Non-GYN Cytology	Cervix		Final Report
Einal	I Deport	Conv. Q. Find	Drint				

Final Report

Copy

Find

🌅 Print

Final Report(11/11/19**%**

Gross Examination :

Submitted was a gall bladder measuring 7.5 cm long and 2 cm from its maximum diameter. The serosa was unremarkable. The gall bladder wall was slightly thickened. The mucosa showed multiple yellowish lots. 1 block.

Microscopic Examination :

Section shows gall bladder wall mucosa and cystic duct wall mucosa. There is mild degree of inflammation of the mucosa. Collection of foamy histiocytes are found in mucosal folds. The muscle coat as thickened.

Diagnosis :

GALL BLADDER cholecystectomy - CHRONIC CHOLECYSTITIS

SNOMED Result Details

Surgical Specimen

	Topology		Morphology		Procedure	
	Code	Description	Code	Description	Code	Description
1	T-C4000	Lymph node	M-80506	Metastatic papillary carcinoma		

Anatomical Pathology Report Content

- Compliance level 1, 2 and 3
 - Level 1 report PDF
 - Level 2 structured data (SNOMED 3)
 - Level 3 structured data (SNOMED CT)
- Structured pathological report data
 - Gross/Macroscopic Examination, Microscopic Examination and Diagnosis, and any other narrative text for pathology report
- Diagnosis field
 - For level 2, structured data are always in pair
 - Topography Morphology/Procedure/Disorder
 - For level 3, structured data are coded in SNOMED CT

Encoded Diagnosis

- Currently the encoded data in HA are in SNOMED 3
- T and M codes are always in a pair, and it can be more than 1 pair
- Will capture local code and local description
- No validation check on those local codes as they are level 2 compliance

Editorial Guide for Laboratory

Editorial Guide on Hong Kong Clinical Terminology Table - Laboratory

[Document Reference No. S01] Version 1.0

D

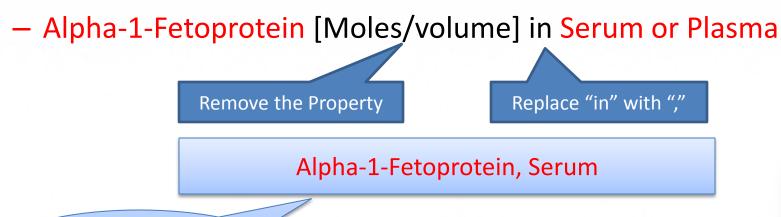
The Government of the Hong Kong Special Administrative Region

Editorial guidelines – Test Display name

General principles:

- Test naming should be Clear, Precise and Concise.
- Tests are named according to the test, condition or disease rather than particular methodology.

Achieve "standard" test display names for eHR


LOINC Common Name

- Use LOINC Common Name as a base to construct our test display name for eHR
- Advantages- They are Distinct, Clear and Consistent
- For example:

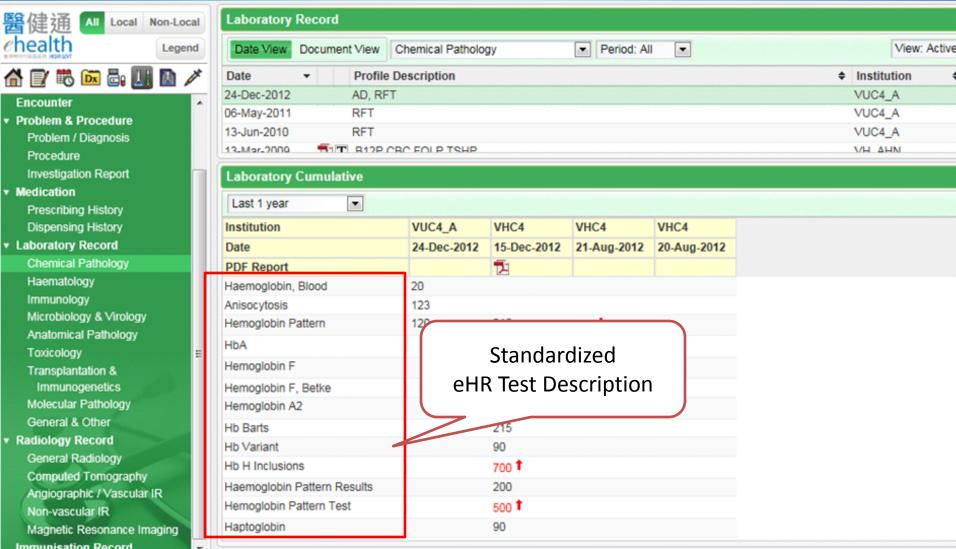
A proposed

test display name

for eHR

Test Display Name for eHR

- eHR IS Lab DG suggestions:
 - Map methodless LOINC code
 - Use LOINC Common Name as a base
 - May make reference to test display name in HA-ePR
 - Favor UK but US spelling also acceptable
 - Seek Lab DG members or (Editorial board)
 approval on the eHR test display name list


Editorial Guidelines – Test name

- The test name format and the order of the components are as follows:
 - <analyte>_[(<abbreviation>)],_[<system>],_[<qualifier>],_[<method>]
 - Note:
 - Component in square brackets is optional
 - An underscore indicates a space.
 - A comma is used in between components to separate them.
 - Capitalize first character of the every component after comma.
 - <system> can be optional if the specimen type information is indicated in another part of the record
 - e.g. Alpha-1-Fetoprotein, Serum
 - e.g. Follicle Stimulating Hormone, Serum

• ...

General Laboratory Result

Organism

With Lab DG members advice:

- The organism name format and the order of the components are listed as follows:
 - <genus>_<species>_[<life cycle>],_[<descriptor>]
 - Note:
 - Component in square brackets is optional
 - An underscore indicates a space.
 - A comma is place before descriptor
 - e.g. Escherichia coli

Specimen type (Microbiology)

With Lab DG members advice:

- Format of Specimen type
 - <specimen>[,_<descriptor>]

For multiple sites

- <1st specimen> [,_<1st descriptor]_+_<2nd specimen> [,_<2nd descriptor>]_...
- Note:
 - Components in square bracket is optional
 - An underscore indicates a space.
 - A comma is place before descriptor
 - A plus sign is used as connector between specimens obtained from multiple sites.
- e.g. Dialysis fluid
- e.g. Peritoneal dialysis fluid, post-dialysis
- e.g. Vaginal + rectal swab

Laboratory data standardization

Туре	Area	Terminology / Ref.	Status
Micro-organisms	HA and DH	SNOMED CT	~2700 concepts
Specimen type (Microbiology)	HA and DH	SNOMED CT	~460 concepts
Antibiotics sensitivity tests	HA and DH	LOINC	
Microbiology tests	HA and DH	LOINC	
Biochemistry tests (common)	HA and DH	LOINC	~2700*
Haematology tests (common)	HA and DH	LOINC	
Immunology tests (common)	HA and DH	LOINC	
Anatomical Pathology (T&M codes)	HA and DH	SNOMED CT	~5600*
Molecular/Esoteric tests	HA and DH	LOINC	In progress
Test description for eHR	eHR	LOINC & eHR DG (Lab)	Draft for DG (Lab) members comment
Editorial policy for laboratory terminology	eHR	LOINC & SNOMED CT & eHR DG (Lab)	Draft for DG (Lab) members comment

^{*}Initial mapping completed. Refinements are required on complicated terms

LOINC Adoption Strategy

- Goals & Roles
- Discrete data elements for lab results
- Your LIS readiness for structured lab data
- LOINC training
- Mapping rules & validation
- Mapping target (80/20 rule)
- Implementation
- Maintenance

Questions

Thank You

